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Abstract

Oxidative stress with subsequent lipid peroxidation has been postulated as one mechanism for lead toxicity. Hence in assessing the
protective effects of lipoic acid (LA) and meso 2,3-dimercaptosuccinic acid (DMSA) on lead toxicity, they were tested either separately or
in combination for their effects on selected indices of hepatic oxidative stress. Elevated levels of lipid peroxides were accompanied by
altered antioxidant defense systems. Lead acetate (Pb - 0.2%) was administered in drinking water for five weeks to induce toxicity. LA (25
mg kg�1 body wt. day�1 i.p) and DMSA (20 mg kg�1 body wt. day�1 i.p) were administered individually and also in combination during
the sixth week. Lead damage to the liver was evident in the decreases in hepatic enzymes alanine transaminase (�38%), aspartate
transaminase (�42%) and alkaline phosphatase (�43%); increases in lipid peroxidation (�38%); decreases in the antioxidant enzymes
catalase (�45%), superoxide dismutase (�40%), glutathione peroxidase (�46%) and decreases in glutathione (�43%) and decreases in
glutathione metabolizing enzymes, glutathione reductase (�59%), glucose-6-phosphate dehydrogenase (�27%) and glutathione-S-trans-
ferase (�42%). In combination LA and DMSA completely ameliorated the lead induced oxidative damage. Either compound alone was
however only partially protective against lead damage. © 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Lead is a non-essential toxic heavy metal widely distrib-
uted in the environment and chronic exposure to low levels
of lead has been a matter of public health concern in many
countries. Lead induces a broad range of physiological,
biochemical and behavioral dysfunctions. Many studies
have explored the mechanisms and symptoms of this tox-
icity through the years but recent studies have reported lead
as a potential agent for inducing oxidative stress by the
production of reactive oxygen species (ROS) [1].

Approximately 90% of the total body lead is contained
within bones [2]. Blood accounts for 4% and the remaining
lead resides mainly in the liver and the kidneys [3]. The
liver and the kidneys are also known to play a major role in
the elimination of lead [4] and hence account for the toxic
actions [5].

Lead is known to produce oxidative damage in the liver
tissues by enhancing peroxidation of membrane lipids [6], a
deleterious process solely carried out by free radicals [7].
Many studies have investigated possible relationship be-
tween lipid peroxidation (LPO) and cellular damage in
hepatic tissues under various pathological conditions [8].
Lewis and Wills [9], have suggested that peroxide formation
may lead to oxidative destruction of thiol groups of amino
acids and proteins. Reports on lead-induced oxidative stress
dates back to 1965 [10]. Lead can cause derangement of
several hepatic biochemical pathways and energy metabo-
lism [11]. In particular lead causes transient, but marked
hypercalaemia, which may contribute to hepatotoxicity
[12].

Cell membranes are targets for oxidative damage pro-
duced by xenobiotics including heavy metals [7]. Peroxida-
tive decomposition of membrane lipids is catastrophic for
living system. Antioxidant enzymes such as catalase (CAT),
superoxide dismutase (SOD), glutathione peroxidase (GPx),
glutathione-S-transferase (GST) and glutathione reductase
(GR) scavenge free radicals and lipid peroxides and detox-
ify them [13]. Previous reports by Dwivedi et al. [13] and
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Tan et al. [14] have shown that LPO is enhanced by distur-
bances such as depletion of cellular antioxidants.

Biological compounds with antioxidant properties con-
tribute to the protection of cells and tissues against delete-
rious effects of ROS and other free radicals [15]. Lipoic acid
(LA), a potent antioxidant [16,17] was identified as an
effective antidote against heavy metal induced toxicities
[18–20]. Meso 2,3-dimercaptosuccinic acid (DMSA) has a
high therapeutic index, which scavenges ROS [21] and has
been identified as a potentially useful drug for the treatment
of lead poisoning [22,23]. Yet little is known about the
combined effect of LA and DMSA on lead toxicity. Hence
the current study was designed to investigate the combined
effects of the two compounds on free radical toxicity during
lead exposure.

2. Materials and methods

2.1. Materials

DL-�-lipoic acid, meso 2,3-dimercaptosuccinic acid,
nicotinamide adenine dinucleotide phosphate and bovine
serum albumin were procured from Sigma Chemicals, St.
Louis, Mo, USA. DMSA was prepared immediately before
use to a concentration of 57 mM in 5% (w/v) NaHCO3.
Sodium pyruvate was purchased from L. H. Boehringer,
Ingelhelm, Germany and glutathione was obtained from
BDH Chemicals Ltd., Poole, England. Thiobarbituric acid
and glucose-6-phosphate were procured from Loba-Che-
mie, Mumbai and Sisco Research Laboratories Ltd., Mum-
bai, India, respectively. Lead in the form of lead II acetate
(Central Drug House Pvt. Ltd., Mumbai, India) was prepared
in double distilled water prior to use. All other chemicals and
solvents used were of highest purity and analytical grade.

2.2. Animal model

Male albino rats (Wistar strain) procured from Tamil-
nadu University for Veterinary and Animal Sciences, Chen-
nai, India, weighing 120 � 20g (10 to 12 weeks old) were
used throughout the study. The rats were fed with a standard
rat pellet diet (M/s. Pranav Agro Industries Ltd., India)
under the trade name Amrut rat/mice feed and had free
access to water. The rats were maintained in a well-venti-
lated animal quarter with 12-hr light and 12 hr dark expo-
sure.

2.3. Experimental design

The animals were assigned into eight groups of six ani-
mals each. Group I (Control) received isotonic saline (0.5
mL day�1i.p) during week 6 only. Group II (Pb) received
Pb (0.2%) in drinking water for 5 weeks and isotonic saline
during week 6. Group III (LA) received LA (25 mg kg�1

body wt day�1i.p) during week 6 only. Group IV (DMSA)

received DMSA (20 mg kg�1 body wt day�1i.p) during
week 6 only. Group V (LA � DMSA) received LA (25 mg
kg�1 body wt day�1i.p) plus DMSA (20 mg kg�1 body wt
day�1i.p) at the same doses during week 6 only. Group VI
(Pb � LA) received Pb (0.2%) in drinking water for 5
weeks and LA during week 6. Group VII (Pb � DMSA)
received Pb (0.2%) in drinking water for 5 weeks and
DMSA during week 6. Group VIII (Pb � LA � DMSA)
received Pb (0.2%) for 5 weeks; LA and DMSA combined
were administered during the sixth week. Dosing regime for
the test animals were fixed based from a previous study [24,
25]. Solutions were prepared fresh daily and the concentra-
tion was adjusted such that a rat would receive 0.5 mL/day.

After the sixth week the animals were sacrificed by
cervical decapitation and the liver was excised immediately
and washed in ice-cold saline. The tissue (liver) was then
homogenized in ice-cold Tris-HCl buffer (0.1 M, pH 7.4) to
give a 10% homogenate.

2.4. Measurements

Alkaline phosphatase (ALP) [26] and the transaminases;
alanine transaminase (ALT) and aspartate transaminase
(AST) were estimated by the method of King [27]. Protein
content in the rat hepatic tissue was determined by the
method of Lowry et al. [28]. LPO was assayed by the
method of Devasagayam [29], in which malondialdehyde
(MDA) released served as the index of LPO. The activity of
CAT was assayed by the method of Sinha [30]. In this
method, dichromate in acetic acid was reduced to chromic
acetate when heated in the presence of hydrogen peroxide
(H2O2), with the formation of perchloric acid as an unstable
intermediate. Chromic acetate thus produced was measured
colorimetrically at 610 nm.

SOD was assayed according to the method of Marklund
and Marklund [31]. The unit of enzyme activity is defined,
as the enzyme required giving 50% inhibition of pyrogallol
autooxidation. GPx was assayed by the method of Rotruck
et al. [32] based on the reaction between glutathione re-
maining after the action of GPx and 5,5�-dithio bis-(2-nitro
benzoic acid) to form a complex that absorbs maximally at
412 nm.

GSH was determined by the method of Moron et al. [33].
GR that utilizes NADPH to convert oxidized glutathione
(GSSG) to the reduced form was assayed by the method of
Staal et al. [34]. The estimation of glucose-6-phosphate
dehydrogenase (G6PD) was assayed by the method of Beu-
tler [35], where the increase in absorbance was measured
when the reaction was started by the addition of glucose-6-
phosphate. GST was assayed by the method of Habig et al.
[36].

2.5. Statistical analysis

The values are expressed as mean�SE. The results were
computed statistically (SPSS software package, version 7.5)
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using one-way Analysis of Variance. Post hoc testing was
performed for inter-group comparison using the LSD. P �
0.001, � 0.01, � 0.05 was considered significant.

3. Results

Lead administration caused a significant (P � 0.05)
decrease in the activities of ALT (�38%), AST (�42%)
and ALP (�43%) (Table 1). Lead administration also
caused a significant (P � 0.05) increase in LPO as measured
by the levels of MDA (�38%) as well as significant (P �
0.05) decreases in the antioxidant enzymes CAT (�45%),
SOD (�40%), GPx (�46%) (Table 2). Furthermore, lead
administration caused significant (P � 0.05) decreases in
GSH (�43%) and the glutathione metabolizing enzymes,
GR (�59%), G6PD (�27%) and GST (�42%) (Table 3).
Treatment with either LA or DMSA ameliorated the
changes induced by lead administration but treatment with
both compounds completely restored all measured values
back to normal (Tables 1 to 3).

4. Discussion

Redox disturbances are known to negatively impact body
system through generation of ROS, which modify proteins,

lipids, and DNA [7]. Liver being one of the targets for lead
accumulation has witnessed the toxic insult of lead [37] by
way of decrease in the activities of transaminases and ALP.

Aminotransferases (ALT and AST) being an important
class of enzymes linking carbohydrate and aminoacid me-
tabolism, have established a relationship between the inter-
mediates of the citric acid cycle. These enzymes are re-
garded as markers of liver injury since; liver is the major
site of metabolism [38]. ALP is membrane bound and its
alteration is likely to affect the membrane permeability and
produce derangement in the transport of metabolites. More-
over Plaa and Hewitt [39] have reported that ALP acts as an
indicator of cholestatic changes. Several researchers have
reported decreased activities of ALT, AST and ALP in liver
during lead poisoning, which corroborates our study [40,
41]. LA in combination with DMSA restored the activities
of these enzymes suggesting the regulatory influence of the
dithiols.

Lead is known to produce oxidative damage in the liver
by enhancing LPO [42,43]. All products of LPO inactivate
cell constituents by oxidation or cause oxidative stress by
undergoing radical chain reaction ultimately leading to loss
of membrane integrity [44,45]. In analogy lead has shown to
implicate hepatic LPO as evidenced by many reports [46–
48].

The stimulation of LPO observed as a result of lead

Table 2
Effect of lipoic acid and meso 2,3-dimercaptosuccinic acid on lead induced lipid peroxidation and antioxidant status of rat liver

Parameters Group I
(Control)

Group II
(Pb)

Group III
(LA)

Group IV
(DMSA)

Group V
(LA�DMSA)

Group VI
(Pb�LA)

Group VII
(Pb�DMSA)

Group VIII
(Pb�LA�DMSA)

LPO 1.56 � 0.06 2.15 � 0.08a* 1.53 � 0.06 1.58 � 0.05 1.57 � 0.05 1.79 � 0.07b* 1.80 � 0.06b* 1.59 � 0.053b*c*d*

CAT 326.48 � 12.66 180.15 � 8.27a* 332.16 � 14.02 328.36 � 11.61 334.65 � 10.55 287.57 � 10.96b* 280.15 � 12.39b* 330.64 � 14.78b*c*d*

SOD 8.49 � 0.28 5.08 � 0.20a* 8.57 � 0.38 8.47 � 0.30 8.58 � 0.32 7.56 � 0.29b* 7.50 � 0.26b* 8.52 � 0.30b*c*d*

GPx 5.44 � 0.16 2.96 � 0.09a* 5.48 � 0.25 5.45 � 0.18 5.50 � 0.22 4.76 � 0.18b* 4.60 � 0.16b* 5.39 � 0.20b*c*d*

Values represent the [mean � SE] for six rats
LPO-nmoles of MDA released mg�1 protein per incubation period
Enzyme activities are expressed as: CAT - �g of H2O2 consumed min�1 mg�1 protein; SOD-units mg�1 protein (one unit is equal to the amount of enzyme

required to inhibit autooxidation of pyrogallol by 50%); GPx-�g of GSH utilized min�1 mg�1 protein
Comparisons are made between: agroups I and II, bgroup II and VI, VII, VIII, cgroup VI and VIII, dgroups VII and VIII
Values are statistically significant at *P � 0.05, @P � 0.01, #P � 0.001

Table 1
Effect of lipoic acid, meso 2,3-dimercaptosuccinic acid and lead on the activities of hepatic enzymes

Parameters Group I
(Control)

Group II
(Pb)

Group III
(LA)

Group IV
(DMSA)

Group V
(LA�DMSA)

Group VI
(Pb�LA)

Group VII
(Pb�DMSA)

Group VIII
(Pb�LA�DMSA)

ALT 1.32 � 0.05 0.82 � 0.04a* 1.34 � 0.06 1.30 � 0.05 1.31 � 0.05 1.13 � 0.05b* 1.09 � 0.04b* 1.30 � 0.05b*c*d*

AST 1.10 � 0.03 0.64 � 0.04a* 1.12 � 0.05 1.10 � 0.04 1.12 � 0.05 0.89 � 0.04b* 0.76 � 0.03b* 1.06 � 0.04b*c*d*

ALP 0.28 � 0.008 0.16 � 0.004a* 0.29 � 0.012 0.27 � 0.004 0.29 � 0.008 0.23 � 0.004b* 0.21 � 0.008b* 0.25 � 0.008b*c*d*

Values represent the [mean � SE] for six rats
Enzyme activities are expressed in terms of unit’s mg�1 protein
One unit of enzyme activity is expressed as: ALT and AST - � moles � 10�1 of pyruvate; ALP - �moles � 10�1 of phenol liberated min�1 mg�1 protein

at 37° C
Comparisons are made between: agroups I and II, bgroup II and VI, VII, VIII, cgroup VI and VIII, dgroups VII and VIII
Values are statistically significant at *P � 0.05, @P � 0.01, #P � 0.001
Standard errors have been calculated and incorporated in all tables.
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administration could be due to the formation of free radicals
[49] through an exhaustion of antioxidants [14] leading to
oxidative stress [50]. However, as lead does not undergo
oxidation - reduction cycle, the effect of lead on LPO is not
a direct effect but these changes could rather be due to an
indirect effect of lead on free-radical scavenging enzymes
and GSH status [51]. Several studies have shown that both
LA [52] and DMSA [53] chelates transition metal ions
thereby inhibiting LPO triggered by ROS. Our reports are
also consistent with the above findings. Sumathi et al. [54]
has shown that LA affords protection against cadmium-
induced hepatotoxicity. LA has displayed protection against
LPO in combination with several antioxidants such as
ascorbic acid and �-tocopherol [55] and oxidized GSH [56].

Antioxidant enzymes like CAT, SOD and GPx form the
first line of defense against ROS and the decrease in their
activities contribute to the oxidative insult on the tissue.
CAT is a major antioxidant enzyme having heme as the
prosthetic group. Lead is known to reduce the absorption of
iron in the gastrointestinal tract and to inhibit the heme
biosynthesis [57]. Decreased CAT activity observed in lead
exposed animals was attributed to the interference of lead
by both processes [58]. Rister and Bachner [59] speculated
that during oxidative stress CAT activity decreases, H2O2

accumulates and thereby the peroxidation of lipids is fa-
vored.

SOD plays an important role in protecting the toxic
effects of superoxide radical by catalyzing its dismutation
reactions. SOD, which requires copper and zinc for its
activity was found to be decreased in lead administered rats.
Mylorie et al. [60] suggested that this could be due to the
lead induced copper deficiency. Minami et al. [61] showed
a 15% to 40% decrease in the activity of SOD in erythro-
cytes of rats exposed to fumes of heavy metals like lead,
cadmium and antimony. Ito et al. [62] have suggested a
partial inhibition of SOD activity in workers exposed to
lead.

On the other hand GPx, a hydroperoxide-degrading en-
zyme, which requires selenium for activity was decreased in
lead, poisoned rats. Loss in GPx activity can be correlated to
the antagonistic effects between lead and selenium that has
been suggested by Schrouzer [63]. Somashekaraiah et al.

[43] apparently reported a decrease in GPx activity at 72 hr
of lead injection in developing chick embryo. The overall
inhibitory effects of lead on various enzymes would prob-
ably result in impaired antioxidant defense by cells and
would render them more prone to oxidative attack.

The usefulness of the antioxidant LA in conjunction with
DMSA was effective in rebalancing the impaired prooxi-
dant/antioxidant ratio. Exogenous administration of LA [16]
and DMSA separately brought about an improvement in the
cells antioxidant defense armory due to their antioxidative
property [1].

GSH is a tripeptide containing cysteine that has a reac-
tive SH group with reductive potency. It can act as a non-
enzymatic antioxidant by direct interaction of SH group
with ROS, or it can be involved in the enzymatic detoxifi-
cation reaction for ROS, as a cofactor or a coenzyme [64].
Lead binds exclusively to the SH groups [65] which de-
creases the GSH levels [66] thereby interfering with the
antioxidant activity. Gurer et al. [42] has apparently re-
ported a decline in GSH levels upon lead intoxication.

GR is responsible for the reduction of GSSG to GSH.
The decrease in GR activity could possibly be due to the
interaction of lead with the sulfydryl group present at the
active site of this enzyme, which in turn prevents the en-
zyme from participating in the reaction [67]. Jindall and Gill
[51] have reported a decline in GR activity after lead expo-
sure.

G6PD supplies the cells with most of the extra mitochon-
drial NADPH through oxidation of glucose-6-phosphate.
This NADPH keeps GSH at a constant level by providing
NADPH for GR, which mediates the reduction of GSSG to
GSH. G6PD is known to contain many SH groups, which
play a crucial role in maintaining its tertiary structure [68].
The formation of lead sulfydryl complex was suggested as
a plausible mechanism behind G6PD inhibition [69].

GST detoxifies electrophilic species via a spontaneous
enzyme catalyzed conjugation reaction. Decreased activity
of GST observed in the present study might be due to
inhibition of protein structure by lead and due to want of
substrate. Evidence for the inhibition of GST, GR by lead
along with a fall in GSH comes from the report made by
Neal et al. [70].

Table 3
Effect of lipoic acid, meso 2,3-dimercaptosuccinic acid and lead on glutathione and glutathione metabolizing enzymes in rat liver

Parameters Group I
(Control)

Group II
(Pb)

Group III
(LA)

Group IV
(DMSA)

Group V
(LA�DMSA)

Group VI
(Pb�LA)

Group VII
(Pb�DMSA)

Group VIII
(Pb�LA�DMSA)

GSH 4.13 � 0.15 2.34 � 0.11a* 4.16 � 0.12 4.14 � 0.15 4.16 � 0.16 3.65 � 0.14b* 3.61 � 0.15b* 4.09 � 0.12b*c*d*

GR 0.29 � 0.012 0.12 � 0.004a* 0.27 � 0.008 0.28 � 0.008 0.28 � 0.012 0.25 � 0.012b* 0.23 � 0.008b* 0.31 � 0.012b*c*d*

G6PD 2.02 � 0.08 1.48 � 0.05a* 2.04 � 0.07 2.00 � 0.09 2.03 � 0.07 1.72 � 0.07b* 1.69 � 0.07b* 1.97 � 0.08b*c*d*

GST 1.15 � 0.04 0.67 � 0.02a* 1.18 � 0.05 1.14 � 0.04 1.17 � 0.03 0.96 � 0.04b* 0.86 � 0.05b* 1.09 � 0.03b*c*d*

Values represent the [mean � SE] for six rats
Enzyme activities are expressed as: GSH - �g mg�1 protein; GR - nmoles of NADPH oxidized min�1 mg�1 protein; G6PD - nmoles of NADPH formed

min�1 mg�1 protein; GST - nmoles of CDNB - GSH conjugate formed min�1 mg�1 protein
Comparisons are made between: agroups I and II, bgroup II and VI, VII, VIII, cgroup VI and VIII, dgroups VII and VIII
Values are statistically significant at *P � 0.05, @P � 0.01, #P � 0.001
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Previous report from our laboratory has shown the ben-
eficial effects of the combined administration of LA and
DMSA in reversing the oxidative damage to the kidney of
lead poisoned rats [24]. Moreover the beneficial effects of
coadministering LA and DMSA in bringing down the blood
lead levels have been recently reported [25].

It is plausible that impaired oxidant / antioxidant balance
can be partially responsible for the toxic effects of lead.
Restoration of the cells antioxidant capacity appears to
provide a partial remedy against lead-induced oxidative
stress. Despite the preponderance of both the drugs as sole
agents for lead toxicity, the combinatorial aid of both drugs
seems to abate the oxidative insult by restoring the altered
lead sensitive biochemical variables to an appreciable ex-
tent. Further studies need to be focused on exploring the
dual benefits of these drugs and mechanisms underlying
these beneficial effects.
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